Range of ${\sin ^{ - 1\,}}\left( {\frac{{1 + {x^2}}}{{2 + {x^2}}}} \right)$ is
$\left[ { - \frac{\pi }{6},\frac{\pi }{6}} \right]$
$\left[ {0,\frac{\pi }{2}} \right)$
$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$
$\left[ { \frac{\pi }{6},\frac{\pi }{2}} \right]$
Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as
$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 .$ Then, the value of $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ is equal to:
Which of the following is true
Let $f: R \rightarrow R$ be a continuous function such that $f\left(x^2\right)=f\left(x^3\right)$ for all $x \in R$. Consider the following statements.
$I.$ $f$ is an odd function.
$II.$ $f$ is an even function.
$III$. $f$ is differentiable everywhere. Then,
The domain of definition of the function $y(x)$ given by ${2^x} + {2^y} = 2$ is
If $f:R \to R$ and $g:R \to R$ are given by $f(x) = \;|x|$ and $g(x) = \;|x|$ for each $x \in R$, then $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $