Range of ${\sin ^{ - 1\,}}\left( {\frac{{1 + {x^2}}}{{2 + {x^2}}}} \right)$ is
$\left[ { - \frac{\pi }{6},\frac{\pi }{6}} \right]$
$\left[ {0,\frac{\pi }{2}} \right)$
$\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$
$\left[ { \frac{\pi }{6},\frac{\pi }{2}} \right]$
If $f(x) = 2\sin x$, $g(x) = {\cos ^2}x$, then $(f + g)\left( {\frac{\pi }{3}} \right) = $
Which of the following is true
The range of $f(x)=4 \sin ^{-1}\left(\frac{x^2}{x^2+1}\right)$ is
Domain of $f (x)$ = $\sqrt {{{\log }_2}\left( {\frac{{10x - 4}}{{4 - {x^2}}}} \right) - 1} $ , is
If $\phi (x) = {a^x}$, then ${\{ \phi (p)\} ^3} $ is equal to