Range of ${\sin ^{ - 1\,}}\left( {\frac{{1 + {x^2}}}{{2 + {x^2}}}} \right)$ is 

  • A

    $\left[ { - \frac{\pi }{6},\frac{\pi }{6}} \right]$

  • B

    $\left[ {0,\frac{\pi }{2}} \right)$

  • C

    $\left[ { - \frac{\pi }{2},\frac{\pi }{2}} \right]$

  • D

    $\left[ {  \frac{\pi }{6},\frac{\pi }{2}} \right]$

Similar Questions

Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined as

$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 .$ Then, the value of $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+\mathrm{f}(\mathrm{k}))}$ is equal to:

  • [JEE MAIN 2021]

Which of the following is true 

Let $f: R \rightarrow R$ be a continuous function such that $f\left(x^2\right)=f\left(x^3\right)$ for all $x \in R$. Consider the following statements.

$I.$ $f$ is an odd function.

$II.$ $f$ is an even function.

$III$. $f$ is differentiable everywhere. Then,

  • [KVPY 2019]

The domain of definition of the function $y(x)$ given by ${2^x} + {2^y} = 2$ is

  • [IIT 2000]

If $f:R \to R$ and $g:R \to R$ are given by $f(x) = \;|x|$ and $g(x) = \;|x|$ for each $x \in R$, then $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $